آشکارسازی حرکت پا در سیستم واسط مغز-رایانه کاربرفرما با استفاده از روش طبقه بندی مبتنی بر نمایش تنک سیگنال

نویسندگان

راحله محمدی

علی محلوجی فر

چکیده

سیستم های bciکاربرفرما در مقایسه با سیستمهای bciسنکرون، ارتباط طبیعی­تر کاربر را با فضای خارج امکان­پذیر می کنند. آشکارسازی بازه های وقوع حرکت در سیگنال پیوسته eegمسأله ای کلیدی در طراحی سیستم­های bci  کاربرفرما مبتنی بر حرکت است. در این مقاله با استفاده از ویژگی بعد فرکتالی در باندفرکانسی 6 تا 36 هرتز و طراحی طبقه بند مبتنی بر نمایش تنک سیگنال، پدیده نورولوژیک همزمانی وابسته به رخداد (ers)- که بلافاصله پس از وقوع حرکت پا در سیگنال eegاتفاق می­افتد- با دقت قابل قبولی از سیگنال پس زمینه تشخیص داده شد. روش پیشنهادی این مقاله، بر سیگنال eegتک کانال ثبت شده از 7 کاربر حین انجام حرکت پا اعمال شد و متوسط=90%   tpravr  و  fpravr=5%برای همه افراد بدست آمد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

آشکارسازی حرکت پا در سیستم واسط مغز-رایانه کاربرفرما با استفاده از روش طبقه‌بندی مبتنی بر نمایش تنک سیگنال

سیستم‌های BCIکاربرفرما در مقایسه با سیستمهای BCIسنکرون، ارتباط طبیعی‌تر کاربر را با فضای خارج امکان‌پذیر می‌کنند. آشکارسازی بازه‌های وقوع حرکت در سیگنال پیوسته EEGمسأله‌ای کلیدی در طراحی سیستم‌های BCI  </spa...

متن کامل

استفاده از طبقه‌بند PCVM در سیستم واسط مغز- رایانه کاربرفرما به منظور بهبود تشخیص حرکت پا

اساس سیستم‌های‌ واسط مغز-رایانه(BCI)کاربرفرما آشکارسازی و تشخیص بازه‌های رخداد یک فعالیت ذهنی مانند تصور حرکت از سیگنال خودبخودی مغز است که این مسأله به دلیل ماهیت غیرایستان و پیچیده سیگنال الکتروانسفالوگرام (EEG) مهمترین چالش در طراحی سیستم‌هایBCIاست. در این مقاله برای اولین بار از یک الگوریتم جدید طبقه‌بندی مبتنی بر یادگیری تنک به نامPCVM در طراحی سیستمBCIکاربرفرما استفاده شده است. هدف اصلی م...

متن کامل

استفاده از طبقه بند pcvm در سیستم واسط مغز- رایانه کاربرفرما به منظور بهبود تشخیص حرکت پا

اساس سیستم های واسط مغز-رایانه(bci)کاربرفرما آشکارسازی و تشخیص بازه های رخداد یک فعالیت ذهنی مانند تصور حرکت از سیگنال خودبخودی مغز است که این مسأله به دلیل ماهیت غیرایستان و پیچیده سیگنال الکتروانسفالوگرام (eeg) مهمترین چالش در طراحی سیستم هایbciاست. در این مقاله برای اولین بار از یک الگوریتم جدید طبقه بندی مبتنی بر یادگیری تنک به نامpcvm در طراحی سیستمbciکاربرفرما استفاده شده است. هدف اصلی مق...

متن کامل

بهبود دقت طبقه بندی سیگنال های eeg در سیستم های واسط مغز-رایانه

دانشمندان همواره بدنبال راه هایی بوده اند که بتوانند یک رابطه ی موثر بین انسان و ماشین پدید آورند به طوریکه این رابطه تا حد امکان نزدیک به رابطه ی انسان با انسان باشد زیرا حتی پیچیده ترین ماشین ها نیز بدون دخالت انسان کارایی خاصی ندارند. نتیجه این تحقیقات تولد سیستم هایی است که به واسط های انسان-ماشین یا واسط های انسان-رایانه معروف هستند. این سیستم ها با توجه به نحوه تعامل آنها با انسان به دسته...

بهبود کارایی طبقه بندی کننده مبتنی بر نمایش تنک برای طبقه بندی سیگنالهای مغزی

در این مقاله مسئله طبقه بندی سیگنالهای eeg مبتنی بر تصور حرکتی برای یک سیستم واسط مغز-کامپیوتر (bci)، توسط طبقه بندی کننده مبتنی بر نمایش تنک (src) مورد توجه واقع شده است. این طبقه بندی کننده برای کارایی بالا نیاز به طراحی ماتریس دیکشنری قوی دارد. با توجه به کارایی بالای الگوریتم الگوهای مکانی مشترک (csp) در سیستمهای bci، از این روش برای طراحی ماتریس دیکشنری استفاده شده است. از معایب cspحساس به...

متن کامل

بهبود عملکرد طبقه بندی کننده مبتنی بر نمایش تنک در سیستم های bci با بهسازی فرایند استخراج ویژگی و استفاده از الگوریتم بهینه یافتن پاسخ تنک

در سال های اخیر، واسط مغز – رایانه (bci)، به عنوان وسیله ای جدید برای ارتباط بین مغز انسان و محیط اطرافش مورد توجه قرار گرفته است. به منظور راه اندازی چنین سیستمی، همکاری چند بلوک از جمله بلوک های ثبت، پردازش سیگنال و رابط کاربری مورد نیاز است. بلوک پردازش سیگنال شامل بلوک های پیش پردازش و شناسایی الگو است و بلوک شناسایی الگو شامل دو مرحله استخراج ویژگی و طبقه بندی می باشد. در این مقاله از طبقه...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
فصل نامه علمی پژوهشی مهندسی پزشکی زیستی

ناشر: انجمن مهندسی پزشکی ایران

ISSN 8006-9685

دوره 6

شماره 2 2012

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023